Display Settings:

Format

Send to:

Choose Destination
We are sorry, but NCBI web applications do not support your browser and may not function properly. More information
J Biol Chem. 1999 Feb 12;274(7):4009-16.

Polyadenylation promotes degradation of 3'-structured RNA by the Escherichia coli mRNA degradosome in vitro.

Author information

  • 1Nuffield Department of Clinical Biochemistry, Institute of Molecular Medicine, John Radcliffe Hospital, University of Oxford, Oxford OX3 9DS, United Kingdom.

Abstract

Polyadenylation contributes to the destabilization of bacterial mRNA. We have investigated the role of polyadenylation in the degradation of RNA by the purified Escherichia coli degradosome in vitro. RNA molecules with 3'-ends incorporated into a stable stem-loop structure could not readily be degraded by purified polynucleotide phosphorylase or by the degradosome, even though the degradosome contains active RhlB helicase which normally facilitates degradation of structured RNA. The exoribonucleolytic activity of the degradosome was due to polynucleotide phosphorylase, rather than the recently reported exonucleolytic activity exhibited by a purified fragment of RNase E (Huang, H., Liao, J., and Cohen, S. N. (1998) Nature 391, 99-102). Addition of a 3'-poly(A) tail stimulated degradation by the degradosome. As few as 5 adenosine residues were sufficient to achieve this stimulation, and generic sequences were equally effective. The data show that the degradosome requires a single-stranded "toehold" 3' to a secondary structure to recognize and degrade the RNA molecule efficiently; polyadenylation can provide this single-stranded 3'-end. Significantly, oligo(G) and oligo(U) tails were unable to stimulate degradation; for oligo(G), at least, this is probably due to the formation of a G quartet structure which makes the 3'-end inaccessible. The inaccessibility of 3'-oligo(U) sequences is likely to have a role in stabilization of RNA molecules generated by Rho-independent terminators.

PMID:
9933592
[PubMed - indexed for MEDLINE]
Free full text
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for HighWire
    Loading ...
    Write to the Help Desk