Format

Send to

Choose Destination
See comment in PubMed Commons below
J Appl Physiol (1985). 1999 Feb;86(2):748-58.

Oximetry of retinal vessels by dual-wavelength imaging: calibration and influence of pigmentation.

Author information

  • 1James E. Garrette Eye Research Laboratory, Department of Ophthalmology, University of Virginia Health Sciences Center, Charlottesville, Virginia 22903, USA.

Abstract

A method for noninvasive measurement of Hb O2 saturation (SO2) in retinal blood vessels by digital imaging was developed and tested. Images of vessels were recorded at O2-sensitive and O2-insensitive wavelengths (600 and 569 nm, respectively) by using a modified fundus camera with an image splitter coupled to an 18-bit digital camera. Retinal arterial SO2 was varied experimentally by having subjects breathe mixtures of O2 and N2 while systemic arterial SO2 was monitored with a pulse oximeter. Optical densities (ODs) of vascular segments were determined using a computer algorithm to track the path of reflected light intensity along vessels. During graded hypoxia the OD ratio (ODR = OD600/OD569) bore an inverse linear relationship to systemic SO2. Compensation for the influence of choroidal pigmentation significantly reduced variation in the arterial SO2 measurements among subjects. An O2 sensitivity of 0.00504 +/- 0.00029 (SE) ODR units/%SO2 was determined. Retinal venous SO2 at normoxia was 55 +/- 3.38% (SE). Breathing 100% O2 increased venous SO2 by 19.2 +/- 2.9%. This technique, when combined with blood flow studies in human subjects, will enable the study of retinal O2 utilization under experimental and various disease conditions.

PMID:
9931217
[PubMed - indexed for MEDLINE]
Free full text
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for HighWire
    Loading ...
    Write to the Help Desk