Send to:

Choose Destination
See comment in PubMed Commons below
J Neurochem. 1999 Feb;72(2):693-9.

Up-regulation of protein chaperones preserves viability of cells expressing toxic Cu/Zn-superoxide dismutase mutants associated with amyotrophic lateral sclerosis.

Author information

  • 1Montreal Neurological Institute and Department of Neurology/Neurosurgery, McGill University, Quebec, Canada.


Mutations in the Cu/Zn-superoxide dismutase (SOD-1) gene underlie some familial cases of amyotrophic lateral sclerosis, a neurodegenerative disorder characterized by loss of cortical, brainstem, and spinal motor neurons. We present evidence that SOD-1 mutants alter the activity of molecular chaperones that aid in proper protein folding and targeting of abnormal proteins for degradation. In a cultured cell line (NIH 3T3), resistance to mutant SOD-1 toxicity correlated with increased overall chaperoning activity (measured by the ability of cytosolic extracts to prevent heat denaturation of catalase) as well as with up-regulation of individual chaperones/stress proteins. In transgenic mice expressing human SOD-1 with the G93A mutation, chaperoning activity was decreased in lumbar spinal cord but increased or unchanged in clinically unaffected tissues. Increasing the level of the stress-inducible chaperone 70-kDa heat shock protein by gene transfer reduced formation of mutant SOD-containing proteinaceous aggregates in cultured primary motor neurons expressing G93A SOD-1 and prolonged their survival. We propose that insufficiency of molecular chaperones may be directly involved in loss of motor neurons in this disease.

[PubMed - indexed for MEDLINE]
PubMed Commons home

PubMed Commons

How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Wiley
    Loading ...
    Write to the Help Desk