Send to:

Choose Destination
See comment in PubMed Commons below
Nature. 1999 Jan 21;397(6716):259-63.

Direct activation of human TRPC6 and TRPC3 channels by diacylglycerol.

Author information

  • 1Institut für Pharmakologie, Universitätsklinikum Benjamin Franklin, Freie Universität Berlin, Germany.


Eukaryotic cells respond to many hormones and neurotransmitters with increased activity of the enzyme phospholipase C and a subsequent rise in the concentration of intracellular free calcium ([Ca2+]i). The increase in [Ca2+]i occurs as a result of the release of Ca2+ from intracellular stores and an influx of Ca2+ through the plasma membrane; this influx of Ca2+ may or may not be store-dependent. Drosophila transient receptor potential (TRP) proteins and some mammalian homologues (TRPC proteins) are thought to mediate capacitative Ca2+ entry. Here we describe the molecular mechanism of store-depletion-independent activation of a subfamily of mammalian TRPC channels. We find that hTRPC6 is a non-selective cation channel that is activated by diacylglycerol in a membrane-delimited fashion, independently of protein kinases C activated by diacylglycerol. Although hTRPC3, the closest structural relative of hTRPC6, is activated in the same way, TRPCs 1, 4 and 5 and the vanilloid receptor subtype 1 are unresponsive to the lipid mediator. Thus, hTRPC3 and hTRPC6 represent the first members of a new functional family of second-messenger-operated cation channels, which are activated by diacylglycerol.

[PubMed - indexed for MEDLINE]
PubMed Commons home

PubMed Commons

How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Nature Publishing Group
    Loading ...
    Write to the Help Desk