Send to

Choose Destination
See comment in PubMed Commons below
J Biol Chem. 1999 Feb 5;274(6):3865-77.

Expansion and deletion of triplet repeat sequences in Escherichia coli occur on the leading strand of DNA replication.

Author information

  • 1Center for Genome Research, Institute of Biosciences and Technology, Texas A & M University, Department of Biochemistry and Biophysics, Texas Medical Center, Houston, Texas 77030-3303, USA.

Erratum in

  • J Biol Chem 1999 Apr 9;274(15):10668.


Expansions and deletions of triplet repeat sequences that cause human hereditary neurological diseases were previously suggested to be mediated by the formation of DNA hairpins on the lagging strand during replication. The replication properties of CTG.CAG, CGG.CCG, and TTC.GAA repeats were studied in Escherichia coli using an in vivo phagemid system as a model for continuous leading strand synthesis. The repeats were substantially deleted when the CTG, CGG, and GAA repeats were the templates for rolling circle replication from the f1 phage origin. The deletions may be mediated by hairpins formed by these repeat tracts. The distributions of the deletion products of the CTG.CAG and CGG.CCG tracts indicated that hairpins of discrete sizes mediate deletions during complementary strand synthesis. Deletions during rolling circle synthesis are caused by larger hairpins of specific sizes. Thus, most deletion products were of defined lengths, suggesting a preference for specific hairpin intermediates. Small expansions of the CTG.CAG and CGG.CCG repeats were also observed, presumably due to the formation of CTG and CGG hairpins on the nascent complementary strand. Since rolling circle replication has been established in vitro as a model for leading strand synthesis, we conclude that triplet repeat instability can also occur on the leading strand of DNA replication.

[PubMed - indexed for MEDLINE]
Free full text
PubMed Commons home

PubMed Commons

How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for HighWire
    Loading ...
    Write to the Help Desk