Send to:

Choose Destination
See comment in PubMed Commons below
J Neurosci. 1999 Feb 1;19(3):1038-48.

Neurotrophins support the development of diverse sensory axon morphologies.

Author information

  • 1Center for the Study of Nervous System Injury, Department of Neurology, Howard Hughes Medical Institute, Washington University School of Medicine, St. Louis, Missouri 63110, USA.


The initial outgrowth of peripheral axons in developing embryos is thought to occur independently of neurotrophins. However, the degree to which peripheral neurons can extend axons and elaborate axonal arborizations in the absence of these molecules has not been studied directly because of exquisite survival requirements for neurotrophins at early developmental stages. We show here that embryonic sensory neurons from BAX-deficient mice survived indefinitely in the absence of neurotrophins, even in highly dissociated cultures, allowing assessment of cell autonomous axon outgrowth. At embryonic day 11 (E11)-E13, stages of rapid axon growth toward targets in vivo, Bax-/- sensory neurons cultured without neurotrophins were almost invariably unipolar and extended only a rudimentary axon. Addition of neurotrophins caused outgrowth of a second axon and a marked, dose-dependent elongation of both processes. Surprisingly, morphological responses to individual neurotrophins differed substantially. Neurotrophin-3 (NT-3) supported striking terminal arborization of subsets of Bax-/- neurons, whereas NGF produced predominantly axon elongation in a different subset. We conclude that axon growth in vitro is neurotrophin dependent from the earliest stages of sensory neuron development. Furthermore, neurotrophins support the appearance of distinct axonal morphologies that characterize different sensory neuron subpopulations.

[PubMed - indexed for MEDLINE]
Free full text
PubMed Commons home

PubMed Commons

How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for HighWire
    Loading ...
    Write to the Help Desk