Send to

Choose Destination
See comment in PubMed Commons below
Am J Physiol. 1999 Jan;276(1 Pt 1):C82-90.

AVP V1 receptor-mediated decrease in Cl- efflux and increase in dark cell number in choroid plexus epithelium.

Author information

  • 1Program in Neurosurgery, Department of Clinical Neurosciences, Brown University/Rhode Island Hospital, Providence, Rhode Island 02903, USA.


The cerebrospinal fluid (CSF)-generating choroid plexus (CP) has many V1 binding sites for arginine vasopressin (AVP). AVP decreases CSF formation rate and choroidal blood flow, but little is known about how AVP alters ion transport across the blood-CSF barrier. Adult rat lateral ventricle CP was loaded with 36Cl-, exposed to AVP for 20 min, and then placed in isotope-free artificial CSF to measure release of 36Cl-. Effect of AVP at 10(-12) to 10(-7) M on the Cl- efflux rate coefficient (in s-1) was quantified. Maximal inhibition (by 20%) of Cl- extrusion at 10(-9) M AVP was prevented by the V1 receptor antagonist [beta-mercapto-beta, beta-cyclopentamethyleneproprionyl1,O-Me-Tyr2,Arg8]vasopressin. AVP also increased by more than twofold the number of dark and possibly dehydrated but otherwise morphologically normal choroid epithelial cells in adult CP. The V1 receptor antagonist prevented this AVP-induced increment in dark cell frequency. In infant rats (1 wk) with incomplete CSF secretory ability, 10(-9) M AVP altered neither Cl- efflux nor dark cell frequency. The ability of AVP to elicit functional and structural changes in adult, but not infant, CP epithelium is discussed in regard to ion transport, CSF secretion, intracranial pressure, and hydrocephalus.

[PubMed - indexed for MEDLINE]
Free full text

LinkOut - more resources

Full Text Sources

Other Literature Sources


PubMed Commons home

PubMed Commons

How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for HighWire
    Loading ...
    Write to the Help Desk