Format

Send to

Choose Destination
See comment in PubMed Commons below
J Am Soc Echocardiogr. 1999 Jan;12(1):7-14.

Assessment of regional wall motion abnormalities with real-time 3-dimensional echocardiography.

Author information

  • 1Department of Medicine and the National Scientific Foundation Engineering Research Center on Emerging Cardiovascular Technologies, Duke University and Duke University Medical Center, Durham, NC 27710, USA.

Abstract

Accurate characterization of regional wall motion abnormalities requires a thorough evaluation of the entire left ventricle (LV). Although 2-dimensional echocardiography is frequently used for this purpose, the inability of tomographic techniques to record the complete endocardial surface is a limitation. Three-dimensional echocardiography, with real-time volumetric imaging, has the potential to overcome this limitation by capturing the entire volume of the LV and displaying it in a cineloop mode. The purpose of this study was to assess the feasibility of using real-time 3-dimensional (RT3D) echocardiography to detect regional wall motion abnormalities in patients with abnormal LV function and to develop a scheme for the systematic evaluation of wall motion by using the 3-dimensional data set. Twenty-six patients with high-quality 2-dimensional echo images and at least 1 regional wall motion abnormality were examined with RT3D echocardiography. For 2-dimensional echocardiography, wall motion was analyzed with a 16-segment model and graded on a 4-point scale from normal (1) to dyskinetic (4), from which a wall motion score index was calculated. Individual segments were then grouped into regions (anterior, inferoposterior, lateral, and apical) and the number of regional wall motion abnormalities was determined. The RT3D echocardiogram was recorded as a volumetric, pyramid-shaped data set that contained the entire LV. Digital images, consisting of a single cardiac cycle cineloop, were analyzed off-line with a computerized display of the apical projection. Two intersecting orthogonal apical projections were simultaneously displayed in cineloop mode, each independently tilted to optimize orientation and endocardial definition. The 2 planes were then slowly rotated about the major axis to visualize the entire LV endocardium. Wall motion was then graded in 6 equally spaced views, separated by 30 degrees, yielding 36 segments per patient. A higher percentage of segments were visualized with 2-dimensional versus RT3D echocardiography (97% vs 83%, respectively, P <.001). With the use of the 2-dimensional echocardiographic results as the standard, RT3D echocardiography detected 55 (96%) of 57 regional wall motion abnormalities. Analysis of the RT3D echocardiograms resulted in 3 false-negative and 5 false-positive findings. The total number of regional wall motion abnormalities was correctly classified by RT3D echocardiography in 19 (73%) of 26 patients. RT3D echocardiography detected 11 of 13 anterior, 19 of 20 inferoposterior, 9 of 9 lateral, and 15 of 15 apical wall motion abnormalities. An excellent correlation was found between the 2 techniques for assessment of the regional wall motion score index (r = 0.89, P <.001). This initial clinical study demonstrates the feasibility and potential advantages of RT3D echocardiography for the assessment of regional LV function. Compared with 2-dimensional echocardiography, this new method permits recording of the entire LV in a single beat, allowing the extent and location of the regional wall motion abnormalities to be determined.

PMID:
9882773
[PubMed - indexed for MEDLINE]

LinkOut - more resources

Full Text Sources

Other Literature Sources

PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Elsevier Science
    Loading ...
    Write to the Help Desk