Format

Send to:

Choose Destination
See comment in PubMed Commons below
Plant Physiol. 1999 Jan;119(1):231-40.

Inhibitory regulation of higher-plant myosin by Ca2+ ions

Author information

  • 1Department of Life Science, Faculty of Science, Himeji Institute of Technology, Harima Science Park City, Hyogo 678-12, Japan (E.Y., T.S. ).

Abstract

Myosin isolated from the pollen tubes of lily (Lilium longiflorum) is composed of a 170-kD heavy chain (E. Yokota and T. Shimmen [1994] Protoplasma 177: 153-162). Both the motile activity in vitro and the F-actin-stimulated ATPase activity of this myosin were inhibited by Ca2+ at concentrations higher than 10(-6) M. In the Ca2+ range between 10(-6) and 10(-5) M, inhibition of the motile activity was reversible. In contrast, inhibition by more than 10(-5) M Ca2+ was not reversible upon Ca2+ removal. An 18-kD polypeptide that showed the same mobility in sodium dodecyl sulfate-polyacrylamide gel electrophoresis as that of spinach calmodulin (CaM) was present in this myosin fraction. This polypeptide showed a mobility shift in sodium dodecyl sulfate-polyacrylamide gel electrophoresis in a Ca2+-dependent manner. Furthermore, this polypeptide was recognized by antiserum against spinach CaM. By immunoprecipitation using antiserum against the 170-kD heavy chain, the 18-kD polypeptide was coprecipitated with the 170-kD heavy chain, provided that the Ca2+ concentration was low, indicating that this 18-kD polypeptide is bound to the 170-kD myosin heavy chain. However, the 18-kD polypeptide was dissociated from the 170-kD heavy chain at high Ca2+ concentrations, which irreversibly inhibited the motile activity of this myosin. From these results, it is suggested that the 18-kD polypeptide, which is likely to be CaM, is associated with the 170-kD heavy chain as a light chain. It is also suggested that this polypeptide is involved in the regulation of this myosin by Ca2+. This is the first biochemical basis, to our knowledge, for Ca2+ regulation of cytoplasmic streaming in higher plants.

PMID:
9880365
[PubMed - as supplied by publisher]
PMCID:
PMC32225
Free PMC Article
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for HighWire Icon for PubMed Central
    Loading ...
    Write to the Help Desk