Display Settings:

Format

Send to:

Choose Destination
We are sorry, but NCBI web applications do not support your browser and may not function properly. More information
Proc Natl Acad Sci U S A. 1998 Dec 22;95(26):15753-7.

Interaction of voltage-gated sodium channels with the extracellular matrix molecules tenascin-C and tenascin-R.

Author information

  • 1Departments of Pharmacology and Neurological Surgery, University of Washington, Seattle, WA 98195-7280, USA.

Abstract

The type IIA rat brain sodium channel is composed of three subunits: a large pore-forming alpha subunit and two smaller auxiliary subunits, beta1 and beta2. The beta subunits are single membrane-spanning glycoproteins with one Ig-like motif in their extracellular domains. The Ig motif of the beta2 subunit has close structural similarity to one of the six Ig motifs in the extracellular domain of the cell adhesion molecule contactin (also called F3 or F11), which binds to the extracellular matrix molecules tenascin-C and tenascin-R. We investigated the binding of the purified sodium channel and the extracellular domain of the beta2 subunit to tenascin-C and tenascin-R in vitro. Incubation of purified sodium channels on microtiter plates coated with tenascin-C revealed saturable and specific binding with an apparent Kd of approximately 15 nM. Glutathione S-transferase-tagged fusion proteins containing various segments of tenascin-C and tenascin-R were purified, digested with thrombin to remove the epitope tag, immobilized on microtiter dishes, and tested for their ability to bind purified sodium channel or the epitope-tagged extracellular domain of beta2 subunits. Both purified sodium channels and the extracellular domain of the beta2 subunit bound specifically to fibronectin type III repeats 1-2, A, B, and 6-8 of tenascin-C and fibronectin type III repeats 1-2 and 6-8 of tenascin-R but not to the epidermal growth factor-like domain or the fibrinogen-like domain of these molecules. The binding of neuronal sodium channels to extracellular matrix molecules such as tenascin-C and tenascin-R may play a crucial role in localizing sodium channels in high density at axon initial segments and nodes of Ranvier or in regulating the activity of immobilized sodium channels in these locations.

PMID:
9861042
[PubMed - indexed for MEDLINE]
PMCID:
PMC28116
Free PMC Article

Images from this publication.See all images (5)Free text

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Icon for HighWire Icon for PubMed Central
    Loading ...
    Write to the Help Desk