Display Settings:

Format

Send to:

Choose Destination
We are sorry, but NCBI web applications do not support your browser and may not function properly. More information
Proc Natl Acad Sci U S A. 1998 Dec 22;95(26):15475-80.

Bidirectional imprinting of a single gene: GNAS1 encodes maternally, paternally, and biallelically derived proteins.

Author information

  • 1Human Genetics Unit, University of Edinburgh, Western General Hospital, Edinburgh EH4 2XU, United Kingdom.

Abstract

The GNAS1 gene encodes the alpha subunit of the guanine nucleotide-binding protein Gs, which couples signaling through peptide hormone receptors to cAMP generation. GNAS1 mutations underlie the hormone resistance syndrome pseudohypoparathyroidism type Ia (PHP-Ia), so the maternal inheritance displayed by PHP-Ia has raised suspicions that GNAS1 is imprinted. Despite this suggestion, in most tissues Gsalpha is biallelically encoded. In contrast, the large G protein XLalphas, also encoded by GNAS1, is paternally derived. Because the inheritance of PHP-Ia predicts the existence of maternally, rather than paternally, expressed transcripts, we have investigated the allelic origin of other mRNAs derived from GNAS1. We find this gene to be remarkable in the complexity of its allele-specific regulation. Two upstream promoters, each associated with a large coding exon, lie only 11 kb apart, yet show opposite patterns of allele-specific methylation and monoallelic transcription. The more 5' of these exons encodes the neuroendocrine secretory protein NESP55, which is expressed exclusively from the maternal allele. The NESP55 exon is 11 kb 5' to the paternally expressed XLalphas exon. The transcripts from these two promoters both splice onto GNAS1 exon 2, yet share no coding sequences. Despite their structural unrelatedness, the encoded proteins, of opposite allelic origin, both have been implicated in regulated secretion in neuroendocrine tissues. Remarkably, maternally (NESP55), paternally (XLalphas), and biallelically (Gsalpha) derived proteins all are produced by different patterns of promoter use and alternative splicing of GNAS1, a gene showing simultaneous imprinting in both the paternal and maternal directions.

PMID:
9860993
[PubMed - indexed for MEDLINE]
PMCID:
PMC28067
Free PMC Article

Images from this publication.See all images (5)Free text

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for HighWire Icon for PubMed Central
    Loading ...
    Write to the Help Desk