Display Settings:


Send to:

Choose Destination
See comment in PubMed Commons below
Mol Pharmacol. 1998 Dec;54(6):1055-63.

Regulation of N-methyl-D-aspartate receptor function by constitutively active protein kinase C.

Author information

  • 1Department of Physiology and Pharmacology, University of Toronto, Toronto, Ontario, Canada, M5S 1A8.


The ability of the constitutively active fragment of protein kinase C (PKM) to modulate N-methyl-D-aspartate (NMDA)-activated currents in cultured mouse hippocampal neurons and acutely isolated CA1 hippocampal neurons from postnatal rats was studied using patch-clamp techniques. The responses of two heterodimeric combinations of recombinant NMDA receptors (NR1a/NR2A and NR1a/NR2B) expressed in human embryonic kidney 293 cells were also examined. Intracellular applications of PKM potentiated NMDA-evoked currents in cultured and isolated CA1 hippocampal neurons. This potentiation was observed in the absence or presence of extracellular Ca2+ and was prevented by the coapplication of the inhibitory peptide protein kinase inhibitor(19-36). Furthermore, the PKM-induced potentiation was not a consequence of a reduction in the sensitivity of the currents to voltage-dependent blockade by extracellular Mg2+. We also found different sensitivities of the responses of recombinant NMDA receptors to the intracellular application of PKM. Some potentiation was observed with the NR1a/NR2A subunits, but none was observed with the NR1a/NR2B combination. Applications of PKM to inside-out patches taken from cultured neurons increased the probability of channel opening without changing single-channel current amplitudes or channel open times. Thus, the activation of protein kinase C is associated with potentiation of NMDA receptor function in hippocampal neurons largely through an increase in the probability of channel opening.

[PubMed - indexed for MEDLINE]
Free full text
PubMed Commons home

PubMed Commons

How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for HighWire
    Loading ...
    Write to the Help Desk