Format

Send to

Choose Destination
See comment in PubMed Commons below
EMBO J. 1998 Nov 16;17(22):6649-59.

Disruption of the p70(s6k)/p85(s6k) gene reveals a small mouse phenotype and a new functional S6 kinase.

Author information

  • 1Friedrich Miescher Institute, Maulbeerstrasse 66, CH-4058 Basel, Switzerland.

Abstract

Recent studies have shown that the p70(s6k)/p85(s6k) signaling pathway plays a critical role in cell growth by modulating the translation of a family of mRNAs termed 5'TOPs, which encode components of the protein synthetic apparatus. Here we demonstrate that homozygous disruption of the p70(s6k)/p85(s6k) gene does not affect viability or fertility of mice, but that it has a significant effect on animal growth, especially during embryogenesis. Surprisingly, S6 phosphorylation in liver or in fibroblasts from p70(s6k)/p85(s6k)-deficient mice proceeds normally in response to mitogen stimulation. Furthermore, serum-induced S6 phosphorylation and translational up-regulation of 5'TOP mRNAs were equally sensitive to the inhibitory effects of rapamycin in mouse embryo fibroblasts derived from p70(s6k)/p85(s6k)-deficient and wild-type mice. A search of public databases identified a novel p70(s6k)/p85(s6k) homolog which contains the same regulatory motifs and phosphorylation sites known to control kinase activity. This newly identified gene product, termed S6K2, is ubiquitously expressed and displays both mitogen-dependent and rapamycin-sensitive S6 kinase activity. More striking, in p70(s6k)/p85(s6k)-deficient mice, the S6K2 gene is up-regulated in all tissues examined, especially in thymus, a main target of rapamycin action. The finding of a new S6 kinase gene, which can partly compensate for p70(s6k)/p85(s6k) function, underscores the importance of S6K function in cell growth.

[PubMed - indexed for MEDLINE]
Free PMC Article
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for HighWire Icon for PubMed Central
    Loading ...
    Write to the Help Desk