Changes in the heparin affinity of extracellular-superoxide dismutase in patients with coronary artery atherosclerosis

Biol Pharm Bull. 1998 Oct;21(10):1090-3. doi: 10.1248/bpb.21.1090.

Abstract

Extracellular-superoxide dismutase [EC 1.15.1.1] (EC-SOD) is a secretory glycoprotein with high affinity for heparin. This enzyme locates in blood vessel walls at a high enough level to suppress oxidative stress under normal conditions. EC-SOD is the major SOD isozyme in plasma, anchored to heparan sulfate proteoglycans in the glycocalyx of endothelial cell surfaces. Plasma EC-SOD is heterogeneous in heparin affinity and can be divided into five fractions, I to V, by heparin-HPLC. It has been suggested that EC-SOD form V is the primary form synthesized in the body and that EC-SOD forms with reduced heparin affinity are the result of proteolytic truncation of the C-terminal end of EC-SOD form V which is responsible for the binding with heparin. Recently, we reported that only plasma EC-SOD form V, with the highest heparin affinity, was increased by intravenous injection of heparin. The heparin affinity of plasma EC-SOD in patients with coronary atherosclerosis (CA+ patients) was compared in this study. The increase of plasma EC-SOD form V after heparin injection in CA+ patients was significantly less than that in subjects without evidence of stenosis in their major coronary arteries (CA- subjects). On the other hand, in CA+ patients, EC-SOD forms I to III, with low heparin affinity, were significantly increased compared to those in CA- subjects. EC-SOD in plasma apparently forms an equilibrium between the plasma phase and endothelial cell surface, and EC-SOD on the endothelial cell surface contributes to protecting the vessel wall against oxidative stress. These findings suggest that the quantitative and qualitative changes of EC-SOD, i.e., the decrease of bound EC-SOD on the endothelial cell surface, might suppress the defense systems against oxidative stress, which causes in part the development of coronary artery atherosclerosis.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Aged
  • Chromatography, High Pressure Liquid / methods
  • Coronary Artery Disease / enzymology*
  • Coronary Artery Disease / pathology
  • Disease Progression
  • Extracellular Space / enzymology
  • Female
  • Heparin / metabolism*
  • Heparin / pharmacology*
  • Humans
  • Isoenzymes / blood*
  • Isoenzymes / drug effects*
  • Male
  • Middle Aged
  • Superoxide Dismutase / blood*
  • Superoxide Dismutase / drug effects*

Substances

  • Isoenzymes
  • Heparin
  • Superoxide Dismutase