Display Settings:


Send to:

Choose Destination
See comment in PubMed Commons below
J Neurophysiol. 1998 Nov;80(5):2268-73.

L-Type Ca2+ channels mediate the slow Ca2+-dependent afterhyperpolarization current in rat CA3 pyramidal cells in vitro.

Author information

  • 1Brain Research Institute, University of Zurich, CH-8057 Zurich, Switzerland.


Single-electrode voltage-clamp recordings were obtained from CA3 pyramidal cells in rat hippocampal organotypic slice cultures, and the slow Ca2+-dependent K+ current or afterhyperpolarization current (IAHP) was elicited with brief depolarizing voltage jumps. The slow IAHP was suppressed by the selective L-type Ca2+ channel antagonists isradipine (2 microM) or nifedipine (10 microM). In contrast, neither omega-conotoxin MVIIA (1 microM) nor omega-agatoxin IVA (200 nM), N-type and P/Q-type Ca2+ channel antagonists, respectively, attenuated this slow outward current. The slow IAHP was significantly reduced by thapsigargin (10 microM), a Ca2+ ATPase inhibitor that depletes intracellular Ca2+ stores, and by ryanodine (10-100 microM), which blocks Ca2+-induced Ca2+ release from intracellular compartments. At this concentration thapsigargin did not modify high-threshold Ca2+ current, which was, however, blocked by isradipine. Thus, in hippocampal CA3 pyramidal cells, Ca2+ influx through L-type Ca2+ channels is necessary to trigger the slow IAHP. Furthermore, intracellular Ca2+-activated Ca2+ stores represent a critical component in the transduction pathway leading to the generation of the slow IAHP.

[PubMed - indexed for MEDLINE]
Free full text

LinkOut - more resources

Full Text Sources

Molecular Biology Databases

PubMed Commons home

PubMed Commons

How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for HighWire
    Loading ...
    Write to the Help Desk