Display Settings:

Format

Send to:

Choose Destination
See comment in PubMed Commons below
J Neurophysiol. 1998 Nov;80(5):2268-73.

L-Type Ca2+ channels mediate the slow Ca2+-dependent afterhyperpolarization current in rat CA3 pyramidal cells in vitro.

Author information

  • 1Brain Research Institute, University of Zurich, CH-8057 Zurich, Switzerland.

Abstract

Single-electrode voltage-clamp recordings were obtained from CA3 pyramidal cells in rat hippocampal organotypic slice cultures, and the slow Ca2+-dependent K+ current or afterhyperpolarization current (IAHP) was elicited with brief depolarizing voltage jumps. The slow IAHP was suppressed by the selective L-type Ca2+ channel antagonists isradipine (2 microM) or nifedipine (10 microM). In contrast, neither omega-conotoxin MVIIA (1 microM) nor omega-agatoxin IVA (200 nM), N-type and P/Q-type Ca2+ channel antagonists, respectively, attenuated this slow outward current. The slow IAHP was significantly reduced by thapsigargin (10 microM), a Ca2+ ATPase inhibitor that depletes intracellular Ca2+ stores, and by ryanodine (10-100 microM), which blocks Ca2+-induced Ca2+ release from intracellular compartments. At this concentration thapsigargin did not modify high-threshold Ca2+ current, which was, however, blocked by isradipine. Thus, in hippocampal CA3 pyramidal cells, Ca2+ influx through L-type Ca2+ channels is necessary to trigger the slow IAHP. Furthermore, intracellular Ca2+-activated Ca2+ stores represent a critical component in the transduction pathway leading to the generation of the slow IAHP.

PMID:
9819242
[PubMed - indexed for MEDLINE]
Free full text

LinkOut - more resources

Full Text Sources

Molecular Biology Databases

PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for HighWire
    Loading ...
    Write to the Help Desk