Format

Send to

Choose Destination
See comment in PubMed Commons below
Curr Biol. 1998 Oct 22;8(21):1195-8.

Protein kinase B (PKB/Akt) activity is elevated in glioblastoma cells due to mutation of the tumor suppressor PTEN/MMAC.

Author information

  • 1Department of Radiation Oncology University of California San Francisco, California, 94115, USA. hkogan@radonc17.ucsf.edu

Abstract

Glioblastomas are highly malignant tumors of the central nervous system that are resistant to radiation and chemotherapy [1]. We explored the role of the phosphatidylinositol (PI) 3-kinase signal transduction pathway in glioblastomas, as this pathway has been shown to inhibit apoptosis induced by cytokine withdrawal and the detachment of cells from the extracellular matrix [2]. Components of this pathway have been implicated in tumor development [3-6]. We show that glioblastoma cells, in contrast to primary human astrocytes, contain high endogenous protein kinase B (PKB/Akt) activity and high levels of PI 3,4,5-triphosphate (PI(3,4,5)P3) and PI(3,4)P2, the lipid products of PI 3-kinase. These glioblastoma cells express mutant forms of the putative 3' phospholipid phosphatase PTEN, also known as MMAC. Expression of wild-type PTEN derived from primary astrocytes, but not of mutant forms of PTEN, reduced the levels of 3' phosphoinositides and inhibited PKB/Akt activity. PTEN antagonized the activation of PKB/Akt by growth factors, by activated PI 3-kinase and by PI-dependent protein kinase-1 (PDK1), but did not antagonize the phospholipid-independent activation of PKB/Akt lacking the pleckstrin homology (PH) domain. These results suggest a role for PTEN in regulating the activity of the PI 3-kinase pathway in malignant human cells.

PMID:
9799739
[PubMed - indexed for MEDLINE]
Free full text
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Elsevier Science
    Loading ...
    Write to the Help Desk