Format

Send to:

Choose Destination
See comment in PubMed Commons below
Antimicrob Agents Chemother. 1998 Nov;42(11):2810-6.

DNA gyrase and topoisomerase IV are dual targets of clinafloxacin action in Streptococcus pneumoniae.

Author information

  • 1Molecular Genetics Group, Department of Biochemistry, St. George's Hospital Medical School, University of London, London SW17 ORE, United Kingdom.

Abstract

We examined the response of Streptococcus pneumoniae 7785 to clinafloxacin, a novel C-8-substituted fluoroquinolone which is being developed as an antipneumococcal agent. Clinafloxacin was highly active against S. pneumoniae 7785 (MIC, 0.125 microg/ml), and neither gyrA nor parC quinolone resistance mutations alone had much effect on this activity. A combination of both mutations was needed to register resistance, suggesting that both gyrase and topoisomerase IV are clinafloxacin targets in vivo. The sparfloxacin and ciprofloxacin MICs for the parC-gyrA mutants were 16 to 32 and 32 to 64 microg/ml, respectively, but the clinafloxacin MIC was 1 microg/ml, i.e., within clinafloxacin levels achievable in human serum. S. pneumoniae 7785 mutants could be selected stepwise with clinafloxacin at a low frequency, yielding first-, second-, third-, and fourth-step mutants for which clinafloxacin MICs were 0.25, 1, 6, and 32 to 64 microg/ml, respectively. Thus, high-level resistance to clinafloxacin required four steps. Characterization of the quinolone resistance-determining regions of the gyrA, parC, gyrB, and parE genes by PCR, HinfI restriction fragment length polymorphism, and DNA sequence analysis revealed an invariant resistance pathway involving sequential mutations in gyrA or gyrB, in parC, in gyrA, and finally in parC or parE. No evidence was found for other resistance mechanisms. The gyrA mutations in first- and third-step mutants altered GyrA hot spots Ser-83 to Phe or Tyr (Escherichia coli coordinates) and Glu-87 to Gln or Lys; second- and fourth-step parC mutations changed equivalent hot spots Ser-79 to Phe or Tyr and Asp-83 to Ala. gyrB and parE changes produced novel alterations of GyrB Glu-474 to Lys and of Pro-454 to Ser in the ParE PLRGK motif. Difficulty in selecting first-step gyrase mutants (isolated with 0.125 [but not 0.25] microg of clinafloxacin per ml at a frequency of 5.0 x 10(-10) to 8.5 x 10(-10)) accompanied by the small (twofold) MIC increase suggested only a modest drug preference for gyrase. Given the susceptibility of defined gyrA or parC mutants, the results suggested that clinafloxacin displays comparable if unequal targeting of gyrase and topoisomerase IV. Dual targeting and the intrinsic potency of clinafloxacin against S. pneumoniae and its first- and second-step mutants are desirable features in limiting the emergence of bacterial resistance.

PMID:
9797208
[PubMed - indexed for MEDLINE]
PMCID:
PMC105948
Free PMC Article
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for HighWire Icon for PubMed Central
    Loading ...
    Write to the Help Desk