Send to:

Choose Destination
See comment in PubMed Commons below
Brain Behav Evol. 1998;52(4-5):207-17.

Of mice and genes: evolution of vertebrate brain development.

Author information

  • 1Department of Biomedical Sciences, Creighton University, Omaha, NE 68178, USA.


In this review the current understanding of genetic and molecular evolution of development, in particular the formation of the major axis of bilateral animals, is critically evaluated, and the early pattern formation in the hindbrain is related as much as possible to these processes. On the genetic level it is proposed that the exuberant multiplication of regulatory genes compared to that of structural genes relates to the increased flexibility of early vertebrate development. In comparisons to fruit flies, many conserved genes are found to be expressed very differently, while many others seem to reflect a comparable pattern and thus suggest a conservation of function. Even genes with a largely conserved pattern of expression may change the level at which they are expressed and the mechanisms by which they are regulated in their expression. Evolution and development of hindbrain motoneurons is reviewed, and it is concluded that both comparative data as well as more recent experimental data suggest a limited importance for the rhombomeres. Clearly, many cell fate-specifying processes work below the level of rhombomeres or in the absence of rhombomeres. It is suggested that more comparative developmental data are needed to establish firmly the relationship between homeobox genes and rhombomere specification in vertebrates other than a few model species.

[PubMed - indexed for MEDLINE]
PubMed Commons home

PubMed Commons

How to join PubMed Commons

    Supplemental Content

    Loading ...
    Write to the Help Desk