Send to:

Choose Destination
See comment in PubMed Commons below
J Neurosci. 1998 Nov 1;18(21):8590-604.

Defining affinity with the GABAA receptor.

Author information

  • 1Vollum Institute, Oregon Health Sciences University, Portland, Oregon 97201, USA.


At nicotinic and glutamatergic synapses, the duration of the postsynaptic response depends on the affinity of the receptor for transmitter (Colquhoun et al., 1977;Pan et al., 1993). Affinity is often thought to be determined by the ligand unbinding rate, whereas the binding rate is assumed to be diffusion-limited. In this view, the receptor selects for those ligands that form a stable complex on binding, but binding is uniformly fast and does not itself affect selectivity. We tested these assumptions for the GABAA receptor by dissecting the contributions of microscopic binding and unbinding kinetics for agonists of equal efficacy but of widely differing affinities. Agonist pulses applied to outside-out patches of cultured rat hippocampal neurons revealed that agonist unbinding rates could not account for affinity if diffusion-limited binding was assumed. However, direct measurement of the instantaneous competition between agonists and a competitive antagonist revealed that binding rates were orders of magnitude slower than expected for free diffusion, being more steeply correlated with affinity than were the unbinding rates. The deviation from diffusion-limited binding indicates that a ligand-specific energy barrier between the unbound and bound states determines GABAA receptor selectivity. This barrier and our kinetic observations can be quantitatively modeled by requiring the participation of movable elements within a flexible GABA binding site.

[PubMed - indexed for MEDLINE]
Free full text
PubMed Commons home

PubMed Commons

How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for HighWire
    Loading ...
    Write to the Help Desk