Display Settings:

Format

Send to:

Choose Destination
We are sorry, but NCBI web applications do not support your browser and may not function properly. More information
J Biol Chem. 1998 Oct 23;273(43):28365-70.

Domains mediating intramolecular folding and oligomerization of MxA GTPase.

Author information

  • 1Abteilung Virologie, Institut für Medizinische Mikrobiologie und Hygiene, University of Freiburg, 79008 Freiburg, Germany.

Abstract

MxA is an interferon-induced GTPase of human cells that inhibits the multiplication of several RNA viruses by a still poorly understood mechanism. Previous biochemical studies indicated that the C terminus of MxA folds back to form a functional GTP-binding pocket, and that an internal fragment contains a domain required for oligomerization. Using the yeast two-hybrid system, we have now mapped these domains. MxA sequences located downstream of amino acid 564 were found to strongly interact with an internal domain that includes amino acids 372 to 540. This interaction was abolished by mutating phenylalanine 382 or leucine 612, which is part of a leucine zipper motif. Neither the C-terminal nor the internal MxA fragments formed homo-oligomers. Using a mammalian nuclear transport assay that can detect protein-protein interactions, we further found that full-length MxA forms complexes with MxA fragments that include amino acids 372 to 540. This interaction was not observed when phenylalanine 382 was exchanged for alanine or arginine. Furthermore, interaction of two full-length MxA molecules occurred only if at least one of them carried a functional C-terminal leucine zipper motif. These results suggest that C-terminal back-folding and oligomerization are two alternative outcomes of the same type of interaction between the C-terminal and the internal domains of MxA. Intramolecular interaction is believed to result in the formation of MxA monomers, whereas intermolecular interaction may induce the formation of large MxA oligomers.

PMID:
9774462
[PubMed - indexed for MEDLINE]
Free full text
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for HighWire
    Loading ...
    Write to the Help Desk