Send to:

Choose Destination
See comment in PubMed Commons below
Eur J Neurosci. 1998 Aug;10(8):2669-76.

Learning-specific, time-dependent increases in hippocampal Ca2+/calmodulin-dependent protein kinase II activity and AMPA GluR1 subunit immunoreactivity.

Author information

  • 1Instituto de BiologĂ­a Celular y Neurociencias 'Prof. Dr Eduardo de Robertis', Facultad de Medicina, Universidad de Buenos Aires, 1121 Buenos Aires, Argentina.


Ca2+/calmodulin-dependent protein kinase II (CAMK II) and one of its target, alpha-amino-3-hydroxy-5-methylisoxazole-4-propionic acid (AMPA), glutamate receptors have been shown to participate in both long-term potentiation (LTP) in the hippocampus, and in spatial, as well as in a variety, of learning paradigms. Recently, we were able to demonstrate that the intrahippocampal infusion of a specific inhibitor of CAMK II (KN62) provoked full retrograde amnesia of an inhibitory avoidance learning in rats when given immediately, but not 120 or 240 min, after training. Furthermore, this task is accompanied by a rapid, selective and reversible increase in hippocampal [3H] AMPA receptor binding. Here we report the effect of this aversively motivated learning task on CAMK II activity, and AMPA GluR1 subunit phosphorylation and immunoreactivity in the hippocampus. One trial inhibitory avoidance training is associated with a learning-specific, time-dependent increase (25-78%) in both total and Ca2+-independent activities of CAMK II in the hippocampus of rats killed immediately (0 min), but not 120 min, after training. In addition, immunoblotting experiments showed an increment in the amount of the alpha-subunit of CAMK II at 0, 30 and 120 min after training. An increase in the in vitro phosphorylation of alpha- and beta-subunits of CAMK II was also observed in hippocampal synaptosomal membranes (SPM) of trained rats killed immediately and 30 min post-training. In addition, inhibitory avoidance is accompanied by a 20% increase in GluR1 phosphorylation and a 33% increase in GluR1 immunoreactivity 120 min after training. No significant changes were observed in shocked animals. Phosphorylation of hippocampal SPM from naive control animals in conditions suitable for CAMK II activation resulted in a large increase in the density of [3H] AMPA binding (+ 100%). Taken together, these findings confirm and extend previous data suggesting that CAMK II and AMPA glutamate receptors in the hippocampus participate in the early phase of memory formation of an inhibitory avoidance learning.

[PubMed - indexed for MEDLINE]
PubMed Commons home

PubMed Commons

How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Blackwell Publishing
    Loading ...
    Write to the Help Desk