Send to:

Choose Destination
See comment in PubMed Commons below
J Neurosci. 1998 Oct 15;18(20):8228-35.

Synaptic potentials mediated via alpha-bungarotoxin-sensitive nicotinic acetylcholine receptors in rat hippocampal interneurons.

Author information

  • 1Neuroscience Program, University of Colorado Health Sciences Center, Denver, Colorado 80262, USA.


Exogenous application of acetylcholine elicits inward currents in hippocampal interneurons that are mediated via alpha-bungarotoxin-sensitive nicotinic acetylcholine receptors, but synaptic responses mediated via such receptors have never been reported in mammalian brain. In the present study, EPSCs were evoked in hippocampal interneurons in rat brain slices by electrical stimulation and were recorded by using whole-cell voltage-clamp techniques. Nicotinic EPSCs were isolated pharmacologically, using antagonists to block other known types of ligand-gated ion channels, and then were tested with either alpha-bungarotoxin or methyllycaconitine, which are selective antagonists for nicotinic acetylcholine receptors that contain the alpha7 receptor subunit. Each antagonist proved highly effective at reducing the remaining synaptic current. Evoked alpha7-mediated nicotinic EPSCs also were desensitized by superfusion with 1 microM nicotine, had extrapolated reversal potentials near 0 mV, and showed strong inward rectification at positive potentials. In several interneurons, methyllycaconitine-sensitive spontaneous EPSCs also were observed that exhibited a biphasic decay rate very similar to that of the alpha7-mediated evoked response. These studies provide the first demonstration of a functional cholinergic synapse in the mammalian brain, in which the primary postsynaptic receptors are alpha-bungarotoxin-sensitive nicotinic acetylcholine receptors.

[PubMed - indexed for MEDLINE]
Free full text
PubMed Commons home

PubMed Commons

How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for HighWire
    Loading ...
    Write to the Help Desk