Display Settings:

Format

Send to:

Choose Destination
We are sorry, but NCBI web applications do not support your browser and may not function properly. More information
Biochemistry. 1998 Sep 29;37(39):13516-25.

Stepwise subunit interaction changes by mono- and bisphosphorylation of cardiac troponin I.

Author information

  • 1Ruhr-Universität Bochum, Institut für Physiologische Chemie, Abt. Biochemie Supramolekularer Systeme, Germany.

Abstract

Four phosphorylation degrees of cardiac troponin I (cTnI) have been characterized, namely, a dephospho, a bisphospho, and two monophospho states. Here we describe for the first time a role of the monophosphorylated forms. We have investigated the interaction between the cardiac troponin subunits dependent on the phosphorylation state of cTnI by surface plasmon resonance (SPR) spectroscopy. The monophosphorylated forms were generated by mutating each of the two serine residues, located in human cTnI at positions 22 and 23, to alanine. Association and dissociation rate constants of binary (cTnI-cTnT and cTnI-cTnC) and ternary (cTnI/cTnC complex-cTnT) complexes were determined. Mono- and consecutive bisphosphorylation of cTnI gradually reduces the affinity to cTnC and cTnT by lowering the association rate constants; the dissociation rate constants remain unchanged. Phosphorylation also affects formation of the ternary complexes; however, in this instance, association rate constants are constant, and dissociation rate constants are enhanced. A model of cardiac troponin is presented describing an induction of distinct conformational changes by mono- and bisphosphorylation of cTnI.

PMID:
9753437
[PubMed - indexed for MEDLINE]
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for American Chemical Society
    Loading ...
    Write to the Help Desk