Display Settings:

Format

Send to:

Choose Destination
We are sorry, but NCBI web applications do not support your browser and may not function properly. More information
Cell. 1998 Sep 18;94(6):727-37.

Apaf1 (CED-4 homolog) regulates programmed cell death in mammalian development.

Author information

  • 1Department of Molecular Cell Biology, Max Planck Institute of Biophysical Chemistry, Göttingen, Germany.

Abstract

The cytosolic protein APAF1, human homolog of C. elegans CED-4, participates in the CASPASE 9 (CASP9)-dependent activation of CASP3 in the general apoptotic pathway. We have generated by gene trap a null allele of the murine Apaf1. Homozygous mutants die at embryonic day 16.5. Their phenotype includes severe craniofacial malformations, brain overgrowth, persistence of the interdigital webs, and dramatic alterations of the lens and retina. Homozygous embryonic fibroblasts exhibit reduced response to various apoptotic stimuli. In situ immunodetection shows that the absence of Apaf1 protein prevents the activation of Casp3 in vivo. In agreement with the reported function of CED-4 in C. elegans, this phenotype can be correlated with a defect of apoptosis. Our findings suggest that Apaf1 is essential for Casp3 activation in embryonic brain and is a key regulator of developmental programmed cell death in mammals.

PMID:
9753320
[PubMed - indexed for MEDLINE]
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Icon for Elsevier Science
    Loading ...
    Write to the Help Desk