Display Settings:


Send to:

Choose Destination
See comment in PubMed Commons below
Hum Hered. 1998 Sep-Oct;48(5):275-84.

Multi-locus nonparametric linkage analysis of complex trait loci with neural networks.

Author information

  • 1Department of Genetics and Development, Columbia University, New York, N.Y., USA.


Complex traits are generally taken to be under the influence of multiple genes, which may interact with each other to confer susceptibility to disease. Statistical methods in current use for localizing such genes essentially work under single-gene models, either implicitly or explicitly. In genomic screens for complex disease genes, some of the marker loci must be in tight linkage with disease susceptibility genes. We developed a general multi-locus approach to identify sets of such marker loci. Our approach focuses on affected sib pair data and employs a nonparametric pattern recognition technique using artificial neural networks. This technique analyzes all markers simultaneously in order to detect patterns of locus interactions. When applied to previously published sib pair data on type I diabetes, our approach finds the same genes as in the published report in addition to some new loci. For a specific two-locus model of inheritance, the power of our approach is higher than that of the currently used analysis standard.

[PubMed - indexed for MEDLINE]
PubMed Commons home

PubMed Commons

How to join PubMed Commons

    Supplemental Content

    Loading ...
    Write to the Help Desk