Format

Send to:

Choose Destination
See comment in PubMed Commons below
J Biol Chem. 1998 Oct 2;273(40):26078-86.

Cloning and disruption of caPLB1, a phospholipase B gene involved in the pathogenicity of Candida albicans.

Author information

  • 1Center for Medical Mycology, University Hospitals of Cleveland, and Case Western Reserve University, Cleveland, Ohio 44106-5028, USA.

Abstract

The Candida albicans PLB1 gene was cloned using a polymerase chain reaction-based approach relying on degenerate oligonucleotide primers designed according to the amino acid sequences of two peptide fragments obtained from a purified candidal enzyme displaying phospholipase activity (Mirbod, F., Banno, Y., Ghannoum, M. A., Ibrahim, A. S., Nakashima, S., Yasuo, K., Cole, G. T., and Nozawa, Y. (1995) Biochim. Biophys. Acta 1257, 181-188). Sequence analysis of a 6.7-kilobase pair EcoRI-ClaI genomic clone revealed a single open reading frame of 1818 base pairs that predicts for a pre-protein of 605 residues. Comparison of the putative candidal phospholipase with those of other proteins in data base revealed significant homology to known fungal phospholipase Bs from Saccharomyces cerevisiae (45%), Penicillium notatum (42%), Torulaspora delbrueckii (48%), and Schizosaccharomyces pombe (38%). Thus, we have cloned the gene encoding a C. albicans phospholipase B homolog. This gene, designated caPLB1, was mapped to chromosome 6. Disruption experiments revealed that the caplb1 null mutant is viable and displays no obvious phenotype. However, the virulence of strains deleted for caPLB1, as assessed in a murine model for hematogenously disseminated candidiasis, was significantly attenuated compared with the isogenic wild-type parental strain. Although deletion of caPLB1 did not produce any detectable effects on candidal adherence to human endothelial or epithelial cells, the ability of the caplb1 null mutant to penetrate host cells was dramatically reduced. Thus, phospholipase B may well contribute to the pathogenicity of C. albicans by abetting the fungus in damaging and traversing host cell membranes, processes which likely increase the rapidity of disseminated infection.

PMID:
9748287
[PubMed - indexed for MEDLINE]
Free full text
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for HighWire
    Loading ...
    Write to the Help Desk