Send to:

Choose Destination
See comment in PubMed Commons below
Am J Physiol. 1998 Oct;275(4 Pt 2):H1497-501.

Mechanosensitive ion channels in putative aortic baroreceptor neurons.

Author information

  • 1Cardiovascular Center, College of Medicine, University of Iowa, Iowa City, Iowa 52242, USA.


Cell-attached patch-clamp experiments were performed on dissociated neurons from nodose ganglia of adult rats. Putative aortic baroreceptor neurons were identified by labeling nerve endings in the adventitia of the aortic arch with the carbocyanine dye DiI. Whereas previous experiments demonstrated the presence of mechanosensitive (MS) whole cell currents, these experiments studied single MS ion channels and examined the influence of culture conditions on their expression. Single MS channels were activated by applying negative pressure through the recording pipette. Channel openings became more frequent as the negative pressure was increased, with open probability increasing significantly above 30 mmHg. MS channels had a slope conductance of 114 pS and a reversal potential of approximately 0 mV, consistent with a nonspecific cation conductance. Channels were not affected by antagonists of voltage-gated conductances but were blocked by 20 microM gadolinium, a known blocker of MS ion channels. When nodose neurons were cocultured with aortic endothelial cells, but not aortic smooth muscle cells, the percentage of patches exhibiting MS ion channels increased significantly, suggesting that aortic endothelial cells secrete a diffusible factor that increases channel expression.

[PubMed - indexed for MEDLINE]
Free full text
PubMed Commons home

PubMed Commons

How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for HighWire
    Loading ...
    Write to the Help Desk