Display Settings:

Format

Send to:

Choose Destination
We are sorry, but NCBI web applications do not support your browser and may not function properly. More information
Mol Cell Biochem. 1998 Jul;184(1-2):153-67.

Molecular characterization of the creatine kinases and some historical perspectives.

Author information

  • 1Department of Pediatrics, Washington University School of Medicine and St. Louis Children's Hospital, MO 63110, USA.

Abstract

Over the last 15 years, molecular characterization of the creatine kinase (CK) gene family has paralleled the molecular revolution of understanding gene structure, function, and regulation. In this review, we present a summary of advances in molecular analysis of the CK gene family with a few vignettes of historical interest. We describe how the muscle CK gene provided an essential model system to examine myogenic regulatory mechanisms, leading to the discovery of the binding site for the MyoD family of basic helix-loop-helix transcription factors essential in skeletal myogenesis and the characterization of the MEF2 family of factors with an A/T rich consensus binding site essential in skeletal myogenesis and cardiogenesis. Cloning and characterization of the four mRNAs and nuclear genes encoding the cytosolic CKs, muscle and brain CKs, and the mitochondrial (Mt) CKs, sarcomeric MtCK and ubiquitous MtCK, has allowed intriguing study of tissue-specific and cell-specific expression of the different CKs and analysis of structural, functional, regulatory, and evolutionary relationships among both the four CK proteins and genes. Current and future studies focus on understanding both cellular energetics facilitated by the CK enzymes, especially energy channelling from the site of production, the mitochondrial matrix and inner membrane, to various cytosolic foci of utilization, and regulation of MtCK gene expression at the cell and tissue-specific level as models of regulation of energy producing genes.

PMID:
9746319
[PubMed - indexed for MEDLINE]
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Loading ...
    Write to the Help Desk