Display Settings:

Format

Send to:

Choose Destination
See comment in PubMed Commons below
Mol Biol Cell. 1998 Sep;9(9):2337-47.

The role of preassembled cytoplasmic complexes in assembly of flagellar dynein subunits.

Author information

  • 1Department of Anatomy and Cell Biology, SUNY Health Science Center, Syracuse, New York 13210, USA.

Abstract

Previous work has revealed a cytoplasmic pool of flagellar precursor proteins capable of contributing to the assembly of new flagella, but how and where these components assemble is unknown. We tested Chlamydomonas outer-dynein arm subunit stability and assembly in the cytoplasm of wild-type cells and 11 outer dynein arm assembly mutant strains (oda1-oda11) by Western blotting of cytoplasmic extracts, or immunoprecipitates from these extracts, with five outer-row dynein subunit-specific antibodies. Western blots reveal that at least three oda mutants (oda6, oda7, and oda9) alter the level of a subunit that is not the mutant gene product. Immunoprecipitation shows that large preassembled flagellar complexes containing all five tested subunits (three heavy chains and two intermediate chains) exist within wild-type cytoplasm. When the preassembly of these subunits was examined in oda strains, we observed three patterns: complete coassembly (oda 1, 3, 5, 8, and 10), partial coassembly (oda7 and oda11), and no coassembly (oda2, 6, and 9) of the four tested subunits with HCbeta. Our data, together with previous studies, suggest that flagellar outer-dynein arms preassemble into a complete Mr approximately 2 x 10(6) dynein arm that resides in a cytoplasmic precursor pool before transport into the flagellar compartment.

PMID:
9725897
[PubMed - indexed for MEDLINE]
PMCID:
PMC25499
Free PMC Article
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for HighWire Icon for PubMed Central
    Loading ...
    Write to the Help Desk