Display Settings:

Format

Send to:

Choose Destination
We are sorry, but NCBI web applications do not support your browser and may not function properly. More information
J Biol Chem. 1998 Sep 4;273(36):23476-84.

The chi psi subunits of DNA polymerase III holoenzyme bind to single-stranded DNA-binding protein (SSB) and facilitate replication of an SSB-coated template.

Author information

  • 1Department of Biochemistry and Molecular Genetics, University of Colorado Health Sciences Center, Denver, Colorado 80262, USA.

Abstract

A complex of the chi and psi proteins is required to confer resistance to high levels of glutamate on the DNA polymerase III holoenzyme-catalyzed reaction (Olson, M., Dallmann, H. G., and McHenry, C. (1995) J. Biol. Chem. 270, 29570-29577). We demonstrate that this salt resistance also requires templates to be coated with the Escherichia coli single-stranded DNA-binding protein (SSB). We show that this is the result of a direct chipsi-SSB interaction that is strengthened approximately 1000-fold when SSB is bound to DNA. On model oligonucleotide templates, DNA polymerase III core is inhibited by SSB. We show that the minimal polymerase assembly that will synthesize DNA on SSB-coated templates is polymerase III-tau-psi chi. gamma, the alternative product of the dnaX gene, will not replace tau in this reaction, indicating that tau's unique ability to bind to DNA polymerase III holding chipsi in the same complex is essential. All of our findings are consistent with chipsi strengthening DNA polymerase III holoenzyme interactions with the SSB-coated lagging strand at the replication fork, facilitating complex assembly and elongation.

PMID:
9722585
[PubMed - indexed for MEDLINE]
Free full text

LinkOut - more resources

Full Text Sources

Other Literature Sources

PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Icon for HighWire
    Loading ...
    Write to the Help Desk