Display Settings:

Format

Send to:

Choose Destination
We are sorry, but NCBI web applications do not support your browser and may not function properly. More information
Nature. 1998 Aug 13;394(6694):690-4.

A dual thrombin receptor system for platelet activation.

Author information

  • 1Cardiovascular Research Institute, Department of Medicine, University of California, San Francisco 94143-0130, USA.

Abstract

Platelet-dependent arterial thrombosis triggers most heart attacks and strokes. Because the coagulation protease thrombin is the most potent activator of platelets, identification of the platelet receptors for thrombin is critical for understanding thrombosis and haemostasis. Protease-activated receptor-1 (PAR1) is important for activation of human platelets by thrombin, but plays no apparent role in mouse platelet activation. PAR3 is a thrombin receptor that is expressed in mouse megakaryocytes. Here we report that thrombin responses in platelets from PAR3-deficient mice were markedly delayed and diminished but not absent. We have also identified PAR4, a new thrombin-activated receptor. PAR4 messenger RNA was detected in mouse megakaryocytes and a PAR4-activating peptide caused secretion and aggregation of PAR3-deficient mouse platelets. Thus PAR3 is necessary for normal thrombin responses in mouse platelets, but a second PAR4-mediated mechanism for thrombin signalling exists. Studies with PAR-activating peptides suggest that PAR4 also functions in human platelets, which implies that an analogous dual-receptor system also operates in humans. The identification of a two-receptor system for platelet activation by thrombin has important implications for the development of antithrombotic therapies.

PMID:
9716134
[PubMed - indexed for MEDLINE]
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Nature Publishing Group
    Loading ...
    Write to the Help Desk