Send to

Choose Destination
See comment in PubMed Commons below
J Cell Sci. 1998 Sep;111 ( Pt 17):2551-61.

Expanding the role of HsEg5 within the mitotic and post-mitotic phases of the cell cycle.

Author information

  • 1Department of Medical Biochemistry, University of Calgary, Calgary, Alberta, Canada.


The BimC family of kinesin like proteins are involved in spindle dynamics in a wide variety of organisms. The human member of this family, HsEg5, has been implicated in centrosome separation during prophase/prometaphase and in the organization of in vitro mitotic asters. HsEg5 displays a complex distribution during mitosis, associating with the centrosomes, spindle microtubules, specific regions of the intracellular bridge and a microtubule bundle that forms in association with the post-mitotic migration of the centrosome. In an effort to determine the function of HsEg5 during late mitotic events and refine its proposed function during early mitotic centrosome separation, we microinjected antibodies specific to HsEg5 into HeLa cells during various stages of mitosis. In the presence of HsEg5 antibodies we find that the microtubule arrays responsible for both pre- and post-mitotic centrosome movement never form. Similarly, the microtubule bundle within the intracellular bridge becomes prematurely altered following karyokinesis resulting in the loss of the microtubule array at either end of the bridge. In addition, some peri-centrosomal material at the spindle poles becomes fragmented and the distribution of the spindle protein NuMA becomes more concentrated at the minus ends of the spindle microtubules. Our study also provides direct evidence that there is a link between post-mitotic centrosome migration and Golgi complex positioning and reformation following mitosis. We conclude that HsEg5 plays a recurrent role in establishing and/or determining the stability of specific microtubule arrays that form during cell division and that this role may encompass the ability of HsEg5 to influence the distribution of other protein components associated with cell division

[PubMed - indexed for MEDLINE]
Free full text
PubMed Commons home

PubMed Commons

How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for HighWire
    Loading ...
    Write to the Help Desk