Display Settings:

Format

Send to:

Choose Destination
See comment in PubMed Commons below
J Biol Chem. 1998 Jul 31;273(31):19532-41.

Small slipped register genetic instabilities in Escherichia coli in triplet repeat sequences associated with hereditary neurological diseases.

Author information

  • 1Institute of Biosciences and Technology, Center for Genome Research, Department of Biochemistry and Biophysics, Texas A & M University, Texas Medical Center, Houston, Texas 77030-3303, USA. rwells@ibt.tamu.edu

Abstract

Genetic instability investigations on three triplet repeat sequences (TRS) involved in human hereditary neurological diseases (CTG.CAG, CGG.CCG, and GAA.TTC) revealed a high frequency of small expansions or deletions in 3-base pair registers in Escherichia coli. The presence of G to A polymorphisms in the CTG.CAG sequences served as reporters for the size and location of these instabilities. For the other two repeat sequences, length determinations confirmed the conclusions found for CTG.CAG. These studies were conducted in strains deficient in methyl-directed mismatch repair or nucleotide excision repair in order to investigate the involvement of these postreplicative processes in the genetic instabilities of these TRS. The observation that small and large instabilities for (CTG.CAG)175 fall into distinct size classes (1-8 repeats and approximate multiples of 41 repeats, respectively) leads to the conclusion that more than one DNA instability process is involved. The slippage of the complementary strands of the TRS is probably responsible for the small deletions and expansions in methyl-directed mismatch repair-deficient and nucleotide excision repair-deficient cells. A model is proposed to explain the observed instabilities via strand misalignment, incision, or excision, followed by DNA synthesis and ligation. This slippage-repair mechanism may be responsible for the small expansions in type 1 hereditary neurological diseases involving polyglutamine expansions. Furthermore, these observations may relate to the high frequency of small deletions versus a lower frequency of large instabilities observed in lymphoblastoid cells from myotonic dystrophy patients.

PMID:
9677376
[PubMed - indexed for MEDLINE]
Free full text
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Icon for HighWire
    Loading ...
    Write to the Help Desk