Stimulation of p38 phosphorylation and activity by arachidonic acid in HeLa cells, HL60 promyelocytic leukemic cells, and human neutrophils. Evidence for cell type-specific activation of mitogen-activated protein kinases

J Biol Chem. 1998 Jul 24;273(30):19277-82. doi: 10.1074/jbc.273.30.19277.

Abstract

Although it is well appreciated that arachidonic acid, a second messenger molecule that is released by ligand-stimulated phospholipase A2, stimulates a wide range of cell types, the mechanisms that mediate the actions of arachidonic acid are still poorly understood. We now report that arachidonic acid stimulated the appearance of dual-phosphorylated (active) p38 mitogen-activated protein kinase as detected by Western blotting in HeLa cells, HL60 cells, human neutrophils, and human umbilical vein endothelial cells but not Jurkat cells. An increase in p38 kinase activity caused by arachidonic acid was also observed. Further studies with neutrophils show that the stimulation of p38 dual phosphorylation by arachidonic acid was transient, peaking at 5 min, and was concentration-dependent. The effect of arachidonic acid was not affected by either nordihydroguaiaretic acid, an inhibitor of the 5-, 12-, and 15-lipoxygenases or by indomethacin, an inhibitor of cyclooxygenase. Arachidonic acid also stimulated the phosphorylation and/or activity of the extracellular signal-regulated protein kinase and of c-jun N-terminal kinase in a cell-type-specific manner. An examination of the mechanisms through which arachidonic acid stimulated the phosphorylation/activity of p38 and extracellular signal-regulated protein kinase in neutrophils revealed an involvement of protein kinase C. Thus, arachidonic acid stimulated the translocation of protein kinase C alpha, betaI, and betaII to a particulate fraction, and the effects of arachidonic acid on mitogen-activated protein kinase phosphorylation/activity were partially inhibited by GF109203X, an inhibitor of protein kinase C. This study is the first to demonstrate that a polyunsaturated fatty acid causes the dual phosphorylation and activation of p38.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Animals
  • Arachidonic Acid / metabolism*
  • Calcium-Calmodulin-Dependent Protein Kinases / metabolism*
  • Enzyme Activation
  • HL-60 Cells
  • HeLa Cells
  • Humans
  • JNK Mitogen-Activated Protein Kinases
  • Liver / enzymology
  • Mitogen-Activated Protein Kinase 1 / metabolism
  • Mitogen-Activated Protein Kinase 3
  • Mitogen-Activated Protein Kinases*
  • Neutrophils / metabolism*
  • Phosphorylation
  • Protein Kinase C / metabolism
  • Rats
  • p38 Mitogen-Activated Protein Kinases

Substances

  • Arachidonic Acid
  • Protein Kinase C
  • Calcium-Calmodulin-Dependent Protein Kinases
  • JNK Mitogen-Activated Protein Kinases
  • Mitogen-Activated Protein Kinase 1
  • Mitogen-Activated Protein Kinase 3
  • Mitogen-Activated Protein Kinases
  • p38 Mitogen-Activated Protein Kinases