Display Settings:


Send to:

Choose Destination
See comment in PubMed Commons below
Curr Opin Chem Biol. 1998 Apr;2(2):159-72.

Oxygen activating nonheme iron enzymes.

Author information

  • 1Department of Chemistry Center for Metals in Biocatalysis, University of Minnesota, 207 Pleasant Street SE, Minneapolis, MN 55455, USA.


The past year has witnessed significant advances in the study of oxygen-activating nonheme iron enzymes. Thirteen crystal structures of substrate and substrate analog complexes of protocatechuate 3, 4-dioxygenase have revealed intimate details about changes at the enzyme active site during catalysis. Crystallographic data have established a 2-His-1-carboxylate facial triad as a structural motif common to a number of mononuclear nonheme iron enzymes, including isopenicillin N synthase, tyrosine hydroxylase and naphthalene dioxygenase. The first metrical data has been obtained for the high valent intermediates Q and X of methane monooxygenase and ribonucleotide reductase, respectively. The number of enzymes thought to have nonheme diiron sites has been expanded to include alkene monooxygenase from Xanthobacter strain Py2 and the membrane bound alkane hydroxylase from Pseudomonas oleovorans (AlkB). Finally, synthetic complexes have successfully mimicked chemistry performed by both mono- and dinuclear nonheme iron enzymes, such as the extradiol-cleaving catechol dioxygenases, lipoxygenase, alkane and alkene monoxygenases and fatty acid desaturases.

[PubMed - indexed for MEDLINE]
PubMed Commons home

PubMed Commons

How to join PubMed Commons

    Supplemental Content

    Icon for Elsevier Science
    Loading ...
    Write to the Help Desk