Format

Send to:

Choose Destination
See comment in PubMed Commons below
Circulation. 1998 Jul 7;98(1):1-5.

Microbubbles targeted to intercellular adhesion molecule-1 bind to activated coronary artery endothelial cells.

Author information

  • 1Department of Medicine, University of Pittsburgh, PA 15213, USA. villanuevafs@msx.upmc.edu

Abstract

BACKGROUND:

Preclinical atherosclerosis is associated with increased endothelial cell (EC) expression of leukocyte adhesion molecules (LAMs), which mediate monocyte adhesion during atherogenesis. Identification of cell-surface LAMs may uniquely allow assessment of endothelial function, but there are no in vivo methods for detecting LAMs. We tested a new microbubble designed to bind to and allow specific ultrasound detection of intercellular adhesion molecule-1 (ICAM-1).

METHODS AND RESULTS:

A perfluorobutane gas-filled lipid-derived microsphere with monoclonal antibody to ICAM-1 covalently bound to the bubble shell was synthesized. Bubbles with either nonspecific IgG or no protein on the shell were synthesized as controls. Coverslips of cultured human coronary artery ECs were placed in a parallel-plate perfusion chamber and exposed to 1 of the 3 microbubble species, followed by perfusion with culture medium. Experiments were performed with either normal or interleukin-1beta-activated ECs overexpressing ICAM-1, and bubble adherence was quantified with epifluorescent videomicroscopy. There was limited adherence of control bubbles to normal or activated ECs, whereas a 40-fold increase in adhesion occurred when anti-ICAM-1-conjugated bubbles were exposed to activated ECs compared with normal ECs (8.1+/-3.5 versus 0.21+/-0.09 bubbles per cell, respectively, P<0.001). Although diminished, this difference persisted even after perfusion at higher wall shear rates.

CONCLUSIONS:

A gas-filled microbubble with anti-ICAM-1 antibody on its shell specifically binds to activated ECs overexpressing ICAM-1. Diagnostic ultrasound in conjunction with targeted contrast agents has the unique potential to characterize cell phenotype in vivo.

PMID:
9665051
[PubMed - indexed for MEDLINE]
Free full text
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for HighWire
    Loading ...
    Write to the Help Desk