Display Settings:

Format

Send to:

Choose Destination
See comment in PubMed Commons below
Science. 1998 Jul 10;281(5374):237-40.

Primary production of the biosphere: integrating terrestrial and oceanic components

Author information

  • 1C. B. Field, Department of Plant Biology, Carnegie Institution of Washington, Stanford, CA 94305, USA. M. J. Behrenfeld and P. Falkowski, Institute of Marine and Coastal Sciences, Rutgers University, New Brunswick, NJ 08901-8521, USA.

Abstract

Integrating conceptually similar models of the growth of marine and terrestrial primary producers yielded an estimated global net primary production (NPP) of 104.9 petagrams of carbon per year, with roughly equal contributions from land and oceans. Approaches based on satellite indices of absorbed solar radiation indicate marked heterogeneity in NPP for both land and oceans, reflecting the influence of physical and ecological processes. The spatial and temporal distributions of ocean NPP are consistent with primary limitation by light, nutrients, and temperature. On land, water limitation imposes additional constraints. On land and ocean, progressive changes in NPP can result in altered carbon storage, although contrasts in mechanisms of carbon storage and rates of organic matter turnover result in a range of relations between carbon storage and changes in NPP.

PMID:
9657713
[PubMed - as supplied by publisher]
Free full text
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for HighWire
    Loading ...
    Write to the Help Desk