Send to:

Choose Destination
See comment in PubMed Commons below
FEBS Lett. 1998 Jun 5;429(1):9-16.

An NMR-based identification of peptide fragments mimicking the interactions of the cathepsin B propeptide.

Author information

  • 1Protein Engineering Network of Centres of Excellence, Montreal, Que., Canada.


Selected fragments of the 62-residue proregion (or residues 1p-62p) of the cysteine protease cathepsin B were synthesized and their interactions with cathepsin B studied by use of proton NMR spectroscopy. Peptide fragments 16p-51p and 26p-51p exhibited differential perturbations of their proton resonances in the presence of cathepsin B. These resonance perturbations were lost for the further truncated 36p-51p fragment, but remained in the 26p-43p and 28p-43p peptide fragments. Residues 23p-26p or TWQ25A in the N-terminal 1p-29p fragment did not show cathepsin B-induced resonance perturbations although the same residues had strongly perturbed proton resonances within the 16p-51p peptide. Both the 1p-29p and 36p-51p fragments lack a common set of hydrophobic residues 30p-35p or F30YNVDI35 from the proregion. The presence of residues F30YNVDI35 appears to confer a conformational preference in peptide fragments 16p-51p, 26p-51p, 28p-43p and 26p-43p, but the same residues induce the aggregation of peptides 16p-36p and 1p-36p. The peptide fragment 26p-43p binds to the active site, as indicated by its inhibition of the catalytic activity of cathepsin B. The cathepsin B prosegment can therefore be reduced into smaller, but functional subunits 28p-43p or 26p-43p that retain specific binding interactions with cathepsin B. These results also suggest that residues F30YNVDI35 may constitute an essential element for the selective inhibition of cathepsin B by the full-length cathepsin B proregion.

[PubMed - indexed for MEDLINE]
Free full text
PubMed Commons home

PubMed Commons

How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Wiley
    Loading ...
    Write to the Help Desk