Format

Send to:

Choose Destination
See comment in PubMed Commons below
J Pharmacol Exp Ther. 1998 Jul;286(1):243-55.

Maintenance of recombinant type A gamma-aminobutyric acid receptor function: role of protein tyrosine phosphorylation and calcineurin.

Author information

  • 1Department of Pharmacology, University of North Texas Health Science Center at Fort Worth, USA.

Abstract

In the present study, rundown of gamma-aminobutyric acid (GABA)-activated Cl- channels was studied in recombinant GABAA receptors stably expressed in human embryonic kidney cells (HEK 293), with conventional whole-cell and amphotericin B-perforated patch recording. When [ATP]i was lowered to 1 mM and resting [Ca++]i was buffered to a relatively high level, the response of alpha 3 beta 2 gamma 2 GABAA receptors to relatively low [GABA] (up to 50 microM) did not show rundown in the whole-cell configuration. However, high [GABA] (greater than 200 microM) induced significant rundown, which was observed by decreases in both the maximum GABA-induced current and GABA EC50. Rundown was prevented completely with a solution containing 4 mM Mg(++)-ATP and low resting [Ca++]i, or during perforated patch recording. The magnitude of rundown was comparable in alpha 1 beta 2 gamma 2 and beta 2 gamma 2 receptors. Neither stimulation nor inhibition of protein kinase A or protein kinase C had a significant effect on rundown. However, sodium metavanadate, an inhibitor of protein tyrosine phosphatase, significantly reduced rundown. In addition, inhibition of protein tyrosine kinase activity by either genistein or lavendustin A induced rundown of the GABA response. Inhibition of the Ca++/calmodulin-dependent phosphatase calcineurin with fenvalerate also prevented rundown of the response to GABA. Our results demonstrate that rundown of GABAA receptor function is concentration-dependent, due to depletion of ATP and/or unbuffered [Ca++]i, and does not depend on the presence or subtype of the alpha subunit. We propose that protein phosphorylation at a tyrosine kinase-dependent site, and a distinct unidentified site, which is dephosphorylated by calcineurin, maintains the function of GABAA receptors.

PMID:
9655866
[PubMed - indexed for MEDLINE]
Free full text
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for HighWire
    Loading ...
    Write to the Help Desk