Display Settings:

Format

Send to:

Choose Destination
Proc Natl Acad Sci U S A. 1998 Jul 7;95(14):7933-8.

The stability of the RNA bases: implications for the origin of life.

Author information

  • 1Department of Chemistry and Biochemistry, University of California at San Diego, La Jolla, CA 92093-0506, USA.
  • 2U CA San Diego, La Jolla

Abstract

High-temperature origin-of-life theories require that the components of the first genetic material are stable. We therefore have measured the half-lives for the decomposition of the nucleobases. They have been found to be short on the geologic time scale. At 100 degreesC, the growth temperatures of the hyperthermophiles, the half-lives are too short to allow for the adequate accumulation of these compounds (t1/2 for A and G approximately 1 yr; U = 12 yr; C = 19 days). Therefore, unless the origin of life took place extremely rapidly (<100 yr), we conclude that a high-temperature origin of life may be possible, but it cannot involve adenine, uracil, guanine, or cytosine. The rates of hydrolysis at 100 degreesC also suggest that an ocean-boiling asteroid impact would reset the prebiotic clock, requiring prebiotic synthetic processes to begin again. At 0 degreesC, A, U, G, and T appear to be sufficiently stable (t1/2 >/= 10(6) yr) to be involved in a low-temperature origin of life. However, the lack of stability of cytosine at 0 degreesC (t1/2 = 17, 000 yr) raises the possibility that the GC base pair may not have been used in the first genetic material unless life arose quickly (<10(6) yr) after a sterilization event. A two-letter code or an alternative base pair may have been used instead.

PMID:
9653118
[PubMed - indexed for MEDLINE]
PMCID:
PMC20907
Free PMC Article

Images from this publication.See all images (4)Free text

Figure 1
Figure 2
Figure 3
Figure 4
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for HighWire Icon for PubMed Central
    Loading ...
    Write to the Help Desk