Display Settings:

Format

Send to:

Choose Destination
See comment in PubMed Commons below
Mol Gen Genet. 1998 May;258(3):183-98.

Cyclin-specific START events and the G1-phase specificity of arrest by mating factor in budding yeast.

Author information

  • 1The Rockefeller University, New York, NY 10021, USA.

Abstract

The START cell cycle transition in the budding yeast Saccharomyces cerevisiae is catalyzed by the Cdc28 cyclin-dependent kinase associated with Cln-type cyclins. Since ectopic expression of the B-type cyclin CLB5 can efficiently rescue the inviability that results from CLN depletion, we tested the specificity of the CLN and CLB classes of cyclins for promoting START-associated events. Several aspects of the regulation of the mating factor response were compared for cells in which START activity was provided by either Cln-cyclins or Clb5. Unlike Cln1 and Cln2, high level expression of Clb5 was unable to repress the activity of the mating factor response pathway at START. Downregulation of Far1 protein at START is normal in cln- GAL1::CLB5 cells. Even though the Clb5-Cdc28 kinase activity in cln- GAL1::CLB5 cells is not downregulated in response to mating factor, cells arrest in the first cycle after addition of mating factor with a similar sensitivity as wild-type cells. However, whereas wild-type cells treated with mating factor arrest specifically in G1 phase as unbudded cells with unreplicated DNA (pre-START), most cln- GAL1::CLB5 cells arrest as budded post-START cells with replicated DNA. Our findings demonstrate the ability of post-START cells to arrest in response to mating factor and provide novel evidence for mechanisms that contribute to restrict mating factor-induced arrest in wild-type cells to the G1 phase of the cell cycle.

PMID:
9645424
[PubMed - indexed for MEDLINE]
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Loading ...
    Write to the Help Desk