Display Settings:

Format

Send to:

Choose Destination
See comment in PubMed Commons below
IEEE Trans Biomed Eng. 1998 Jul;45(7):814-26.

Spatial filtering and neocortical dynamics: estimates of EEG coherence.

Author information

  • 1Department of Psychology, University of Oregon, Eugene 97403-1227, USA. srinivasan@nsi.edu

Abstract

The spatial statistics of scalp electroencephalogram (EEG) are usually presented as coherence in individual frequency bands. These coherences result both from correlations among neocortical sources and volume conduction through the tissues of the head. The scalp EEG is spatially low-pass filtered by the poorly conducting skull, introducing artificial correlation between the electrodes. A four concentric spheres (brain, CSF, skull, and scalp) model of the head and stochastic field theory are used here to derive an analytic estimate of the coherence at scalp electrodes due to volume conduction of uncorrelated source activity, predicting that electrodes within 10-12 cm can appear correlated. The surface Laplacian estimate of cortical surface potentials spatially bandpass filters the scalp potentials reducing this artificial coherence due to volume conduction. Examination of EEG data confirms that the coherence estimates from raw scalp potentials and Laplacians are sensitive to different spatial bandwidths and should be used in parallel in studies of neocortical dynamic function.

PMID:
9644890
[PubMed - indexed for MEDLINE]
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Icon for IEEE Engineering in Medicine and Biology Society
    Loading ...
    Write to the Help Desk