Format

Send to:

Choose Destination
See comment in PubMed Commons below
Blood. 1998 Jul 1;92(1):320-8.

Analysis of the human ferrochelatase promoter in transgenic mice.

Author information

  • 1University of North Carolina at Chapel Hill, Curriculum in Genetics and Molecular Biology, the Departments of Medicine, and Biochemistry and Biophysics, Chapel Hill, NC, USA.

Abstract

Ferrochelatase catalyzes the chelation of ferrous iron and protoporphyrin to form heme. It is expressed as a housekeeping gene in all cells, but is upregulated during erythropoiesis. Ferrochelatase activity is deficient in the inherited disease protoporphyria as a result of heterogeneous mutations. Although human ferrochelatase is transcribed from a single promoter in both nonerythroid and erythroid cells, previous studies using transient transfection assays failed to demonstrate erythroid-specific increased expression from 4.0 kb of the human ferrochelatase promoter containing the erythroid cis-elements, GATA and NF-E2. The present study analyzes the in vivo regulation of the ferrochelatase gene to provide insights into the mechanism of its erythroid-specific enhancement. Transgenic (TG) mouse lines were generated in which the luciferase reporter gene was driven by either a 150-bp ferrochelatase minimal promoter (-0.15 TG) or by a 4.0 kb extended 5' upstream region (-4.0 TG). Expression of the -4.0 TG transgene was generally consistent with the endogenous gene during embryonic development and in nonerythroid and erythroid tissues as demonstrated by Northern blotting and mRNA in situ hybridization. The -4.0 TG was expressed at a higher level than the -0.15 TG in nonerythroid and erythroid tissues, including during extramedullary erythropoiesis induced by n-acetylphenylhydrazine injection. The enhanced erythroid expression of the -4.0 TG correlates with the appearance of a DNase I hypersensitive site in the 5' flanking region of the transgene. Therefore, in the context of chromosomal integration, the 5' flanking region of the ferrochelatase gene is necessary and sufficient to confer high levels of transgene expression in erythroid tissue.

PMID:
9639532
[PubMed - indexed for MEDLINE]
Free full text
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for HighWire
    Loading ...
    Write to the Help Desk