Display Settings:

Format

Send to:

Choose Destination
We are sorry, but NCBI web applications do not support your browser and may not function properly. More information
Biochemistry. 1998 Jun 23;37(25):8965-72.

Ionization-reactivity relationships for cysteine thiols in polypeptides.

Author information

  • 1Department of Biology, University of Utah, Salt Lake City 84112-0840, USA.

Abstract

Thiol-disulfide exchange reactions are required for many aspects of cellular metabolism including the folding of disulfide-bonded proteins, electron transfer, and numerous regulatory mechanisms. To identify factors influencing the rates of these reactions in polypeptides, the reactivities of Cys thiols in 16 model peptides were measured. For each of the peptides, which contained single Cys residues with thiol pKas ranging from 7.4 to 9.1, the rates of exchange with four disulfide-bonded compounds were measured. In reactions with two of the disulfide reagents, cystine and 2-hydroxyethyl disulfide, the peptide thiols displayed Bronsted correlations between reaction rate and pKa similar to those observed previously with model compounds (betanuc = 0.5 and 0.3, respectively). For two reagents with net charges, oxidized glutathione and cystamine, however, the apparent Bronsted coefficients were 0 and 0.8, respectively. These observations are in striking contrast with those obtained with model compounds, for which the Bronsted coefficients for the nucleophilic thiolates are largely independent of the disulfide-containing compound. The differences in the apparent Bronsted coefficients can be largely accounted for by electrostatic interactions between charged groups on the peptides and disulfide reagents and demonstrate that such interactions can play a dominant role in determining the rates of thiol-disulfide exchange in biological molecules. The results presented here provide an improved basis for predicting the rates of these reactions and suggest ways in which differences in the rates of competing reactions can be either minimized, to simplify the analysis of disulfide-coupled folding reactions, or enhanced, to favor formation of particular disulfides.

PMID:
9636038
[PubMed - indexed for MEDLINE]

LinkOut - more resources

Full Text Sources

Other Literature Sources

Molecular Biology Databases

PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for American Chemical Society
    Loading ...
    Write to the Help Desk