Send to:

Choose Destination
See comment in PubMed Commons below
J Comp Neurol. 1998 Jun 29;396(2):211-22.

Loss of primary sensory neurons in the very old rat: neuron number estimates using the disector method and confocal optical sectioning.

Author information

  • 1Department of Neuroscience, Karolinska Institute, Stockholm, Sweden.


Loss of neurons has been considered to be a prime cause of nervous disturbances that occur with advancing age. However, the notion of a constitutive aging-related loss of neurons has been challenged recently in several studies that used up-to-date methods for counting neurons. In this study, we have applied stereological techniques with the objective of obtaining quantitative data on total neuron numbers and the distribution of neuron cross-sectional areas in the fifth cervical (C5) and fourth lumbar (L4) dorsal root ganglion (DRG) of 3- and 30-month-old Sprague-Dawley rats. Tissue data were recorded on a confocal laser-scanning microscope with the use of the optical-disector technique and random, systematic sampling. Aged rats of both sexes disclosed only a small decrease (approximately 12%) in the number of cervical and lumbar DRG neurons. Furthermore, there was no significant correlation between the degree of neuron loss and the extent of behavioral deficits among the aged individuals. The DRG neurons of aged rats had a smaller mean cross-sectional area (approximately 15%; P < 0.001) at both DRG levels. Further analysis of the male cohorts was carried out by using isolectin B4 and neurofilament subunit (phosphorylated 200 kDa; RT97) immunoreactivity (IR) as selective markers for unmyelinated and myelinated axons, respectively, and disclosed no significant change in the relative frequencies of immunoreactive neuron profiles in the old rats. However, RT97-IR DRG neurons of the aged rats had significantly smaller cross-sectional areas (approximately 9% in C5; approximately 16% in L4; P < 0.001) than the young adult rats, indicating a selective cell body atrophy among myelinated primary afferents during aging. The results indicate that loss of primary sensory neurons cannot exclusively explain the functional deficits in sensory perception among senescent individuals. It seems likely that other factors at the subcellular level and/or target interaction(s) contribute substantially to the sensory impairments observed with advancing age.

[PubMed - indexed for MEDLINE]

LinkOut - more resources

Full Text Sources

Other Literature Sources

PubMed Commons home

PubMed Commons

How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Wiley
    Loading ...
    Write to the Help Desk