Format

Send to:

Choose Destination
See comment in PubMed Commons below
Chem Res Toxicol. 1998 Jun;11(6):604-7.

Nitrotyrosine-protein adducts in hepatic centrilobular areas following toxic doses of acetaminophen in mice.

Author information

  • 1Department of Pharmacology and Toxicology, University of Arkansas for Medical Sciences, Little Rock, Arkansas 72205, USA. HinsonJackA@exchange.UAMS.edu

Abstract

Treatment of mice with a toxic dose of acetaminophen (300 mg/kg, ip) significantly increased hepatotoxicity at 4 h, as evidenced by histological necrosis in the centrilobular areas of the liver, and increased serum levels of alanine aminotransferase (ALT) (from 8 +/- 1 IU/L in saline-treated mice to 3226 +/- 892 IU/L in the acetaminophen-treated mice). Serum levels of nitrate plus nitrite (a marker of nitric oxide synthesis) were also increased from 62 +/- 8 microM in saline-treated mice to 110 +/- 14 microM in acetaminophen-treated mice (P < 0.05). Regression analysis of serum ALT levels to serum nitrate plus nitrite levels in individual mice revealed a positive, linear relationship between serum ALT levels and serum nitrate plus nitrite levels with a correlation coefficient of 0.9 (P < 0.05). The y intercept value (nitrate plus nitrite level) was 63 +/- 15 microM. Immunohistochemical analysis of liver sections from acetaminophen-intoxicated mice using an anti-3-nitrotyrosine antibody indicated tyrosine nitration in the proteins of the centrilobular cells. Tyrosine nitration has been shown to occur by peroxynitrite, a reactive intermediate formed by an extremely rapid reaction of nitric oxide and superoxide and a species which also has hydroxyl radical-like activity. Analysis of liver sections using an anti-acetaminophen antiserum indicated the centrilobular cells also contained acetaminophen-protein adducts, a reaction of the metabolite N-acetyl-p-benzoquinone imine with cysteine residues on proteins. These data are consistent with acetaminophen metabolic activation leading to increased synthesis of nitric oxide and superoxide and to peroxynitrite as an important intermediate in the toxicity.

PMID:
9625727
[PubMed - indexed for MEDLINE]
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for American Chemical Society
    Loading ...
    Write to the Help Desk