Send to:

Choose Destination
See comment in PubMed Commons below
J Neurosci. 1998 Jun 15;18(12):4473-81.

mu-Conotoxin PIIIA, a new peptide for discriminating among tetrodotoxin-sensitive Na channel subtypes.

Author information

  • 1Department of Physiology and Biophysics, Case Western Reserve University, Cleveland, Ohio 44106, USA.


We report the characterization of a new sodium channel blocker, mu-conotoxin PIIIA(mu-PIIIA). The peptide has been synthesized chemically and its disulfide bridging pattern determined. The structure of the new peptide is: [sequence: see text] where Z = pyroglutamate and O = 4-trans-hydroxyproline. We demonstrate that Arginine-14 (Arg14) is a key residue; substitution by alanine significantly decreases affinity and results in a toxin unable to block channel conductance completely. Thus, like all toxins that block at Site I, mu-PIIIA has a critical guanidinium group. This peptide is of exceptional interest because, unlike the previously characterized mu-conotoxin GIIIA (mu-GIIIA), it irreversibly blocks amphibian muscle Na channels, providing a useful tool for synaptic electrophysiology. Furthermore, the discovery of mu-PIIIA permits the resolution of tetrodotoxin-sensitive sodium channels into three categories: (1) sensitive to mu-PIIIA and mu-conotoxin GIIIA, (2) sensitive to mu-PIIIA but not to mu-GIIIA, and (3) resistant to mu-PIIIA and mu-GIIIA (examples in each category are skeletal muscle, rat brain Type II, and many mammalian CNS subtypes, respectively). Thus, mu-conotoxin PIIIA provides a key for further discriminating pharmacologically among different sodium channel subtypes.

[PubMed - indexed for MEDLINE]
Free full text
PubMed Commons home

PubMed Commons

How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for HighWire
    Loading ...
    Write to the Help Desk