Format

Send to

Choose Destination
See comment in PubMed Commons below

From GABAA receptor diversity emerges a unified vision of GABAergic inhibition.

Author information

  • 1Department of Psychiatry, University of Illinois at Chicago 60612, USA. costa@psych.uic.edu

Abstract

Transmitter receptor diversity often indicates differences in transmitter receptor transduction mechanisms. This is not the case for gamma-aminobutyric acid subtype A (GABAA) receptor subtypes despite the presence of 16 genes to encode the 5 families of native GABAA receptor subtypes. Similar considerations apply to GABAC receptors and GABAB receptors. Both GABAA and GABAB receptors cause hyperpolarization of neuronal membranes and inhibition of neuronal excitability, but their mechanisms differ. GABAB receptors involve an efflux of K+ rather than an influx of Cl-, as in the case of GABAA and GABAC receptors. The stimulation of GABAA receptors can sometimes cause depolarization by Cl- efflux; this efflux is not the result of a transduction mechanism modification, but of Cl(-)-concentration gradient modification. Presumably, GABAA receptor diversity is directly linked to the inhibitory activity of basket cells and other interneuron axons, each innervating several postsynaptic neurons (cortical and hippocampal pyramidal cells for instance). Since the role of this inhibition is to entrain hippocampal and cortical pyramidal neurons into columnary activity, the GABAA receptor diversification may be a mechanism expressed by these postsynaptic neuron populations that uses different GABA potencies to synchronize pyramidal neurons into columnary activity. Thus, GABA potency variability, which emerges from GABAA receptor diversity, plays a unifying role in the intrinsic functional mechanism of laminated structures. GABAA receptor structural differences also play a role in diazepam tolerance, which is a mechanism operative in neuronal circuit adaptation to the extreme amplification of GABA-gated Cl- current intensities. Partial agonists (such as imidazenil), which modestly amplify GABA action at many GABAA receptor subtypes, fail to cause tolerance, dependence, ataxia, or ethanol and barbiturate potentiation. Partial agonists might become a new class of anxiolytic and anticonvulsant drugs that are virtually devoid of the side effects that cause serious concerns in the clinical use of full allosteric positive modulators of GABA action, such as diazepam, alprazolam, triazolam, and others. None of the above can be used as anticonvulsants because of an extremely high tolerance liability. When there is tolerance to diazepam, signs of sensitization to proconvulsive action are exhibited simultaneously. After tolerance, associated changes in GABAA recepter subtype expression are virtually reversed in 72 h. Also, 96 h after termination of long-term diazepam treatment, rats exhibit anxiety and are more sensitive to kainic acid-elicited convulsions. At the same time, these rats have an increase in brain expression of GLuR1, R2, and R3. It is believed that the supersensitivity to kainic acid, convulsions and anxiety, and the increased expression of GLuR1, R2, and R3 may be parts of the mechanism of diazepam dependence.

[PubMed - indexed for MEDLINE]
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Atypon
    Loading ...
    Write to the Help Desk