Send to:

Choose Destination
See comment in PubMed Commons below
Biochemistry. 1998 May 19;37(20):7313-20.

UTP is a cofactor for the DNA strand exchange reaction performed by the RecA protein of Escherichia coli.

Author information

  • 1Department of Biochemistry and Molecular Biology, University of Texas Medical School, Houston 77225, USA.


The RecA protein of Escherichia coli is required for homologous genetic recombination and induction of the SOS regulon. In order for RecA protein to function in these two roles, a nucleoside triphosphate cofactor, usually ATP or dATP, is required. We have examined the ability of UTP to substitute for (r,d)ATP as nucleoside triphosphate cofactor. We have found that although UTP is hydrolyzed by RecA protein in the presence of long DNA molecules, it is not hydrolyzed in reactions in which the cofactors are oligodeoxyribonucleotides less than approximately 50 nt in length. We show that UTP can efficiently substitute for ATP as nucleoside triphosphate cofactor for the DNA strand exchange reaction in vitro. The RecA1332 protein (Cys129 --> Met), which was originally shown to be defective for homologous recombination in vivo, is able to perform DNA strand exchange in vitro with ATP, but is unable to do so with UTP. These results suggest that UTP may be a cofactor for DNA strand exchange in vivo. The inability of RecA protein to hydrolyze UTP with oligodeoxyribonucleotides as cofactor and the ability of RecA to utilize UTP as cofactor in DNA strand exchange suggest a separation of the functions of RecA protein into those that require exclusively ATP and those which can utilize additional nucleoside triphosphate cofactors.

[PubMed - indexed for MEDLINE]
PubMed Commons home

PubMed Commons

How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for American Chemical Society
    Loading ...
    Write to the Help Desk