Display Settings:

Format

Send to:

Choose Destination
See comment in PubMed Commons below
Development. 1998 Jun;125(12):2171-80.

pha-4 is Ce-fkh-1, a fork head/HNF-3alpha,beta,gamma homolog that functions in organogenesis of the C. elegans pharynx.

Author information

  • 1Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Calgary, Health Sciences Centre, Room 2265, NW, Calgary, Alberta, CANADA T2N 4N1. jmcghee@acs.ucalgary.ca

Abstract

The C. elegans Ce-fkh-1 gene has been cloned on the basis of its sequence similarity to the winged-helix DNA binding domain of the Drosophila fork head and mammalian HNF-3alpha,beta,gamma genes, and mutations in the zygotically active pha-4 gene have been shown to block formation of the pharynx (and rectum) at an early stage in embryogenesis. In the present paper, we show that Ce-fkh-1 and pha-4 are the same gene. We show that PHA-4 protein is present in nuclei of essentially all pharyngeal cells, of all five cell types. PHA-4 protein first appears close to the point at which a cell lineage will produce only pharyngeal cells, independently of cell type. We show that PHA-4 binds directly to a 'pan-pharyngeal enhancer element' previously identified in the promoter of the pharyngeal myosin myo-2 gene; in transgenic embryos, ectopic PHA-4 activates ectopic myo-2 expression. We also show that ectopic PHA-4 can activate ectopic expression of the ceh-22 gene, a pharyngeal-specific NK-2-type homeodomain protein previously shown to bind a muscle-specific enhancer near the PHA-4 binding site in the myo-2 promoter. We propose that it is the combination of pha-4 and regulatory molecules such as ceh-22 that produces the specific gene expression patterns during pharynx development. Overall, pha-4 can be described as an 'organ identity factor', completely necessary for organ formation, present in all cells of the organ from the earliest stages, capable of integrating upstream developmental pathways (in this case, the two distinct pathways that produce the anterior and posterior pharynx) and participating directly in the transcriptional regulation of organ specific genes. Finally, we note that the distribution of PHA-4 protein in C. elegans embryos is remarkably similar to the distribution of the fork head protein in Drosophila embryos: high levels in the foregut/pharynx and hindgut/rectum; low levels in the gut proper. Moreover, we show that pha-4 expression in the C. elegans gut is regulated by elt-2, a C. elegans gut-specific GATA-factor and possible homolog of the Drosophila gene serpent, which influences fork head expression in the fly gut. Overall, our results provide evidence for a highly conserved pathway regulating formation of the digestive tract in all (triploblastic) metazoa.

PMID:
9584117
[PubMed - indexed for MEDLINE]
Free full text
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for HighWire
    Loading ...
    Write to the Help Desk